SCUBA Project Video

  • Post category:News

SCUBA is an FP7 project co-ordinated by the Nimbus Centre, this project will create a novel architecture, services, and engineering methodologies for robust, adaptive, self-organising, and cooperating monitoring and control systems. This addresses the current problems of heterogeneity and interoperability, installation and commissioning complexity, and adaptability and robustness in the building monitoring and control space.

View more information about the SCUBA project http://www.ict-scuba.eu

 

Dr. Alan McGibney

Alan was awarded his PhD in Electronic Engineering in October 2008. His core research expertise lie in the areas of design and optimisation of wireless communication systems, wireless sensor networks for building automation, indoor localisation and software architectures. Money loans online. More recently, his focus has been on reconfiguration, reliability and management of infrastructure for the Physical web, Internet of Things and Cyber Physical Systems. Within Nimbus Centre his main duties include: - The definition, refinement and leadership of the research and innovation strategy and alignment with the overarching Institute strategy - Supervision, performance management and development of researchers and team members - Promote and Implement research excellence and maximise innovation impact through multi-disciplinary projects - Lead funding acquisition, in conjunction with group members and PIs in the Centre Alan has a successful track record in managing and developing research proposals both at a national (EI, IERC) and European level (FP7, H2020). From November 1st 2015 he has lead the technical management for the EU funded H2020 TOPAs (#676760) project, which investigates the reduction of the gap between predicted and actual energy use across blocks of buildings. Previously he has been CITs technical lead in the EU FP7 SCUBA project focusing on Systematic Engineering for Wireless Building Automation Systems. In national funded programmes he was the technical lead in the SFI funded ITOBO project responsible for the deployment of large scale wireless embedded networks for Optimised Building Operation. He is also responsible for the system architecture definition and integration in the IERC EMWINS project which supports model based fault detection and diagnosis. His research and interaction with key industry players has resulted in the development of formal design, deployment, management and verification methodologies for wireless embedded systems which have been encapsulated into cloud based tools and services covering the complete lifecycle of wireless sensor networks (known as WiSuite). He has also been one of the lead developers of the Nimbus Centre NICORE integration and computational platform, which is a scalable, distributed and extensible platform that enables the collection of sensor data from a large number of subsystems; provides computing resources to process those measurements into meaningful quantities and finally make this processed information available to business applications built on top of the platform. PhD Research: A Distributed AI approach for Large Scale WLAN Design The design and deployment of Wi Fi wireless networks is currently still carried out in an ad-hoc fashion with access point installation based on ?rules of thumb?. In order to design flexible in-door wireless communication systems based on WLAN technology, the development of planning software tools for automatic site-specific design of Wi Fi networks are required. These tools need to take various criteria into account such as the optimal number of fixed access points and especially their optimal placing based on accurate radio propagation prediction to satisfy user requirements.